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ANALYSIS OF BOX-LIKE SHELLS OF RECTANGULAR CROSS-SECTION*

V.A. GRISHIN, G.YA. POPOV and V.V. REUT

A method of analysing box-like shells, based on reducing the problem to
the problem of the combined planar and flexural states of a plate with a
defect, for which methods of solution are given in /1/, is proposed (the
defect is understood to be a line for which jumps in the force of
displacement occur when it is crossed). It is shown that for small
thicknesses the solution of the problem of the state of stress of a
box-like shell reduces to the sequential solution of two problems
(flextural and planar), to within terms of a higher order of smallness.
The results of calculating the bending moments and stress in the shell
are represented in the form of graphs and tables.

Box-like shells are analysed in /2-5/ using the method of homogeneous solutions, that
is effective for particular loading cases or for determining the natural vibrations frequencies.
The method used here /6-7/ enables exact solutions to be obtained for an arbitrary load and
significantly simplifies the formulation of the problem and the appropriate computations.

a b

Fig.1

1. Let us examine the state of stress of a shell consisting of two strip-like infinitely
long plates of width OA =a,, OB = b, joined at right angles and subjected to an arbitrary
load (Fig.la). For simplicity, we will assume that the plates are of identical thickness and
are made of the same material. The problem reduces to seeking the solution of the following
system of differential equations:

DA*wy (z, y) = Z, (z, y) (1.1)
a0 pueH ot agW
0z d;v + X, (z,y) =0, _a_zy__*_ 6; + Y (zy)=0
aX Y
A +of)=—t4+v(FZ+ T —e<a<0, —w<ly<oo
DA2u2 (.'/v z) = X2 (y7 Z)
do(® o2 or® ool
65 + 022 +Ya(y,2) =0, a_:z —|——dzz—+Z2(y,z)=0
Y. Z
AEP+oP)=—(+v)(FE+ ) 0<z<h, —oo<y<oo (1-2)
that satisfies the boundary conditions U’ =0 on the forces z=—a (j=1) and z2=0b( =
2)
UL [wy] =w, —kPVY =0, UP(w]=u, + PV =0 (1.3)
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UL [w,]= M — k0" =0, UP [u,]=MP + kP =0
Ug.l) [ 0y] = ol — kﬁl)ul =0, UP [wy vs] = o ¢ kgz)wz =0 (1.4)

1 1)_(1
U [y o] = vy — K8 =0, U [y, vy) = v, + 621 — 0

and the joining conditions at z =2 =0, -co <<y < o ensuring equality of the forces and
displacements at the shell edge

w, = Di&%w,, u, = D,g*u,, v; = v,, g1 = —¢@.® (1.5)

VO o, MO = MO, =@, VO =D

We here introduce dimensionless quantities that are denoted by the same letters as their
corresponding physical quantities but will be marked with an asterisk unlike the latter

(wy, uy) = D,e? (wl*, u2*)/a*7 (vjv Uy, wz) =€ (Uj*y Upgs wz*_) / Ay (1.6)
@ ¥ 2 = (24 Ve 204 MO = MGUELD), VO = VAIE,a,)
o = ‘P(#Dlgs’ (X1, 2y, Yp) = hy ("Xl*' Z2*.v YJ'*)(E*
(Z1, X} = (Z1yr Xow)!Eyr 0,00 = edBE,. 1) — 1Y)/ E,
D, =D, /(E3), b=b,la,, ¢ =h o, a =E =D =1, j=1,2

The subscripts 7 and 2 correspond to quantities on the horizontal and vertical plates:
uj, v;, w; are the displacements of points of the plates in the directions of the =z, ¥, z axes,

M‘,f), Vﬁf’, cpg’ are the bending moment, generalized transverse force, and slope of the plate,

o, <) are the normal and tangential stresses, X; Y,;, Z; are loadings acting in the
directions of the corresponding axes, and h, v, E, D are the thickness, Poisson's ratio,
Young's modulus, and the cylindrical stiffness of the plates.

The operators of the boundary conditions (1.3) and (1.4) describe the conditions of
elastic support of the contour with compliance coefficients kP, we note that the case k(,f) =

oo (here and henceforth, n =20,1,2,3) corresponds to symmetric loading of the box relative
to the j~th face while AP =0 is skew-symmetric. Therefore, the problem of the state of

stress of a box-like structure reduces to integrating a system of differential equations with
total order 16 and satisfying the corresponding number of boundary conditions.

Significant difficulties are inevitable for the direct solution of the problem because
of the awkwardness of the computations and the calculation procedures. Certain simplifications
can be achieved in special cases. For instance, if ae=2b, %,V =k, %, the problem can be
separated into a sum of the problems of the symmetric and skew-symmetric loading of a corner
structure (Fig.la), each of which reduces to solving a problem concerning the planar-bending
state of stress of a strip that is half of the corner struture. It is here necessary to solve
half the differential equations, system (1.1), say, that should satisfy the boundary conditions
(1.3) and (1.4) for = —a and the joining conditions (1.5), where the latter will have the
following form:

in the symmetric case

2=0, w=—Detuy, V=g 0= W =0
in the skew-symmetric case
z=0, w =Dy, V,M=_—-00 M»=yp =0
But, as will be shown below, even in these cases the approach proposed in this paper
will enable the solution to be simplified considerably.

2. Let us alter the formulation of the problem by introducing the new functions

(uys vy 03} (2, 1), <0
(w3 vy —u) (. 2), >0
(O Tays 0,) (7, y):I(Gi‘% T 0) (2 y) 20
o (@, +®, o) (g 1), 20
Xp Yy Z)(z,y) =<0
2y Yoo — X)) (7). >0

(u, v, w)(z, y) = { (2.1).

(X,Y, 2)(z, p) = {
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Replacement of the unknowns (2.1) corresponds to the following operations: imaginary
rotation of the dihedral angle AOB (Fig.la) and reversal of the sign of the plate deflection
YOB while conserving the joining conditions. We consequently obtain the problem of a plate
with a defect along the y axis (Fig.lb). Such a problem reduces to integration of the follow-
ing system of equations

DA (x, y) = Z (z, y) 2.2)
00, 9T,
Br + ay

at 00
. Xy ¥ —
v+ X=0 - +W+Y“O

X ~
Ao+ o) =—(+ V(S +50) —0<a<h 20 —wJy<>»

satisfying the homogeneous boundary conditions
UG twl = Ulelu, v1=0, k, j=1, 2 2.3y

and the conditions on the defect z =0, —oo <<y < o0

WY =Ty = (@) = (M>=0 (2.4)
Dy u)y = —(w, + w), (w) =Dy (u, + u)
<0x> = _[(Va).q. + (Vx)—]v <V*c> = (Ux).;. -+ (ox)—

(Fe =F(F0), FY =F_—F)

The advantage of such an approach is that firstly, the number of differential equations
being solved is halved, secondly, the joining conditions are simplified, thirdly, methods of
solving both planar and flexural problems for plates with a defect are well developed at the
present time and are elucidated in the monograph /1/. We also note that such a formulation
should be more convenient than the traditional one /3/ is applying the method of boundary
elements.

After application of the Fourier transform in the variable y

Uq, Vg Wy, Do o0 u v W Qx
Mia Vie Oxa Oye | = 5 M, V, o, oy el dy (25)
To Zo Xo Yo =ty Z X Y

problem (2.2)-(2.4) reduces to a one-dimensional discontinuous boundary-value problem
Lot () = got (), —a<z<<OAO<<2<h (2.6)

with the homogeneous boundary conditions

Uyt lfot] = Uy [l =0, j =1, 2 (2.7)
Syt = S1fe" = Sifa” = Sy fam = 0, So*fa" = Hy'fo s roJ'fm+ = (2.8)
_Ss—foc_

[Sstfa'l €D, = ot lHy fo ], [Hy'fa'l 82Dy = ot {Sy7fo7]
Here
Jot (2) = Oya fo (2) = wq (2), ga* (¥) = —R3Xo — iaRy'Yq, 2.9)
'8 (1‘) = Za.
and the differential operators

a"f

Ry *f = ol k=01, REf=[L+ (1+Ev)a?]f (2.10)

Rgtf= L [L—(1+v)a]f, Lf=-ar—af

Sf=(T"— T}, Hf =(T"+ T*) f, T#f=f(0)
Sitf = S [Rtf], Htf = H [Rtfl, Tt = T [Ry*f]

are introduced.
The transforms of the fundamental elastic quantities
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i
dat

. dYﬁ
—a‘ua=Rs+fa*+[ —2(1+v)a"’]Xa+ta P

[:2:¢
—iadve = Ry*fe* + "Eli +ia¥a We=Ryfa"s Pa=Ryfa"

My = -Rz_ftz—v Ve = —Rgfo"y Oxa = Ro+fa.+q Ty = R1+f<l+ + Xeo

can be expressed by using the differential operators (2.10) and functions of the boundary
conditions

Uy [fe] = Rt fo® + (— 2 RELE, Uy [fa] = Rt +
(— 1= l‘«zliR1ifai

Wy = K", Pt = a4k, Boy™ = K, Boj" = azkgj))

can be transformed, where j =1 corresponds to the face = —a and j=2 to the face
z =0

We will seek the solution of the discontinuous boundary-value problem (2.6)-(2.8) accord-
ing to the scheme elucidated in /7/, in the form

foat (2) = fot (2) + ,-§o (— 1) fETE Gt (2, 1) (it = Si¥a¥) (2.11)

where f* (i =0,1,2,3) are unknown jumps of the function f,* (z), Go* (z, &) are Green's func-
tions of the boundary-value problem (2.6), (2.7), while f¢* is a particular solution given
by the relation

b
it = § qat )G (z, 0)at

Here and everywhere below the operators T;* are applied in the variable t. It follows
from the first four conditions (2.7) that four out of the eight unknown jumps equal zero:
T =/ft=0, while the remaining four are a solution of the system of four linear algebraic
equations obtained on substituting (2.11) into the last four conditions (2.8)

1 0 —Cy™ Ca | 1ot Hyy (212)
0 et tDy —Cay Coo || fs" Hoq
—&¥Ca"  &%Cy" —atDy 0 |1fy” - e2Hy,
—Cos" Coo* 0 — 4|t H(:-q

Cy* = BHAT X6, HE=H )

Therefore, after having solved system (2.12), the solution of the boundary-value problem
(2.6)-(2.8) will be
fat = fo* (2) + foETy* [Gat] — f5ETo* [Got] (2.13)

and this enables the transforms of all the elastic quantities to be obtained, in particular

b

wo (&) = fg Ty |G} = T [Ga] + § 40 (8) G (2. D) dE

—a

— iara (1) = [ Ry TG0t — [P Ry T "Gyt +
b

) § (X @A = v)aiCr® (1, 8)] +

Yo () (— ia®) [2LGo" (1, 8) - (1 - v) 02Gy* (z, )]} dE
— oty (1) = fo" By* T "Gy — fat By Ty Got —

b
at(l - v) g (X (1 — V) Ga™ (1, 8) — 202, (2, B)} +

—a
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Yo ) [(— i) Go* (z, §)]} dE
&

g (08 =\ Ga* (z,1)at
—a

Here the prime and dot denote the derivative with respect to the first and second vari-
ables, respectively.

We note that system (2.12) splits into two independent second-order systems in the two
pairs of jumps f,£ and f,;* for a=0> and Ak, =o (n =0,1,2,3;j=1,2) in the case of
symmetric loading of a sguare box because Cujé =C§f, = (. By separating the problem into sym-
metric and skew-symmetric problems with respect to the z coordinate, it can be achieved that
one of these pairs will equal zero identically. In this case the solution of the planar
(flexural) problem is expressed in terms of one of the jumps f;* (f;7) or [, (f,") for which
the analytical expression is sufficiently simple.

For instance, when a shell is compressed by concentrated forces P, applied at the centres
of the faces y =0, z = +b, the case of the symmetric problem is

s~ = P (20)* (2B + sh 2B) (sh B + B ch B),
fst = 2P (¢p)ad sh2 B (sh B + B ch B)
p =2 [3 (1 — v?)[ta?sh* B 4 (B 4+ sh B ch B)%;
P =PJ/(E,a,2), B=ab

3. The scheme mentioned was realized to solve the problem of the symmetric loading of
a box shell of rectangular profile by a load of constant intensity ¢ applied perpendicular to
the middle surface of the horizontal plates %k, =o0 (j=1,2: n=0,1,2,3) for two kinds of
loading: a load distribution line z = —a, —I <y <! parallel to the plate joining line
(Problem 1), and a load distribution line y =0, —a — Il <z < —a + ! perpendicular to it
(Problem 2). Hereq = q,/(E,a,), | = l,/a,. In this case Green's functions G, (z, t) of the
flexural and planar problems are identical.

Values of M. and o, in different sections were calculated on a computer for different
ratios between a, b and 1. The representation

Meo(og) = M (2 9) + = § Mia(@) e da

was used here.

Here M, is the explicitly inverted weakly convergent part extracted from the particular
solution, whose transform has only a power-law decrease in «, as a result of which its
numerical inversion is difficult, Mz, (2) is a function which decreases exponentially with

respect toa whose integral canbe efficiently evaluated numerically. Values of the transforms
of the jumps f.*¥ are determined directly here from the solution of system (2.12) while the
operators and functionals of Green's functions are conveniently programmed in matrix form.

7.7 |,
Z
/
\ z
-/ -0.5 '\J a8
-4,z
Fig.2

A graph of the dimensionless quantity M. is shown in Fig.2 for the first kind of load-
ing (curve 1) and the second kind of loading (curve 2) (Problems 1 and 2, respectively) in
the section y =0 where M, has the maximum value for v =04, I =1, b = 0.5,_ e = 0.01.
Values of the flexural stresses o,! (at the point 2z = —a, y =0 where they have the maximum
values), 0,2 (at the point z =y =0 where they are a maximum on the plate joining line)
and the maximum planar stresses o, (at the point z =0, y = +0) are represented in the
table for v = 0.4, ¢ = 0,01 and a number of values of b,!. The physical quantities are connected
by the dimensionless relations

O = OxfululPy? Mey = Mugily
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Agreement between the results of the solution of Problem 1 for large ! (the values 5 and
10 wave verified) and the results of solving the plane strain problem (when {— ~) in a fairly
small neighbourhood of ¥ is a confirmation of the validity of the proposed methodology and
the numerical computations. Exact agreement within the limits of calculation accuracy is
noted in the area y < 0.7L Let us add that the solutions of Problems 1 and 2 become identical

as 1—0 (the case of loading by a concontrated force).
Problem 1 Problem 2

’ ' oy} op* —prio" oy} Op? —apxlu‘
0.1 4.74 112 718 417 1.07 787
0.5 0.5 2.60 1.01 665 2.05 1.0 885
1 1.73 0.798 473 1,19 0.940 2330
0.1 4.85 0.984 777 4.27 0.973 78t
1 0.5 2.711 0.875 663 2.13 0.955 883
1 1.83 0.664 470 1.24 0.880 2330
0.1 4.91 0.912 779 4.29 0.939 788
Z 0.5 2.78 0.801 664 2.14 0.902 886
1 1.90 0.397 470 1.27 0.743 2330

4. The solution constructed above for the problem of a box-like shell can be simplified
assuming the parameter & to be small. We note that all the elastic gquantities in the
formulation (1.1)-(1.5) have the same order of smallness in the parameter e. And if we pass
to the limit in (1.5) as &—0, we obtain w, =u, =0 and problem (1.1)-(1.5) splits into

two sequentially solvable problems.
Problem A is to seek the solution of the system of the first two equations (1.1) and

(1.2) satisfying the boundary conditions (1.3) and the joining conditions
Wy Uy = O~ ‘PA(” = _—(;‘1(2)- M\'(” = _M:(Z) (41)

Problem B is to seek the solution of the system of the last two egquations (1.1) and (1.2)
that satisfy the boundary conditions (1.4) and the joining conditions

1 2 0
vy = vy TR = 1D 60 = VO ¢ = VW (4.2)

where the values of V.2 and V.Y are determined from the solution of Problem A.
If the method described in Sect.2 is applied to solve these problems, then Problem A will
reduce to the investigation of the bending of a plate having a hinge support

@ =My =0,w, =u_ =0

while Problem B will reduce to an analysis of the plane state of stress of a plate weakened

by a defect of the form
(tyy = =0, (o) = F (Va)x

The solution of Problems A and B yields an approximate solution of problem (1.1)-(1.5)
and its equivalent problem (2.2)-(2.4) apart from a component of the order of smallness O (g?)
as ¢ — 0. The value of this fact is that standard programs to compute the planar and bend-
ing problems of plate theory can be efficiently used to solve problems on the analysis of
laminar shells. The solution of Problems A and B is constructed here according to the scheme
of Sect.2 by the integral transform method. Then after application of the transformations
(2.5) these problems are reduced to the simplified (¢ = 0) system (2.12) whose solution has

the form
fo~ =0, fi7= (Coo_)_l H;q’ fo+ = ng _ C:m+ (Cooﬁ)-1 H(;q
fs* = (Coo*V 1 {Hoqg— Cog*Hyg -+ (Cop) 1 {1 — Cs9" Cog™| Hog}

Then in the case of a load in the form of a concentrated force with components {Piy, Pyu-
P, applied at the point (&, n), the transforms of the bending 0,, and planar stresses
0, that occur in the plates can be written in the form

20,01y = 6P, "R,"Q (7, §)



8,20y, = €9 (P Ry*Q (2, 8) + Pyu(— ia) R*Q(x,8) +
Py (Cog ) 2[Cog*Cogtbyg (2, &) + (C30Cos™ — 1) bgo (2, &) +
b3 (2, E) — Cog*Cog™boa (: E)}
Q(@,8) = Ga (2,8) — Ga (2, 0) Ga (0, B) Ga' (0, 0),

by (7, 8) = [Hy Go (2, )] [T Ga (2, E)]

where the coefficients C(j* are defined in (2.12) and the operators R;*, T+, H;* in
(2.10), where the operators are here applied to the second variable. In particular, in the
case of Problem 1 the maximum bending stresses are

o

6 ‘ si

Tu Ssmal %
a

g, =
* 3
T &

[
(1+v)chA[BchA+cthh(A+B)]+(1—v)A(BJrcthhB—{—Ach“B)da
Bch®A4-Ach3B -+ chAchBsh(A+ B)

(4 = aa, B = ab)

Calculations showed that for e<Z0,1 in the case of Problems 1 and 2 the exact and
approximate solutions agree to within three significant figures.
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